Acta Crystallographica Section E

Structure Reports

 OnlineISSN 1600-5368

Jin Lin, Hai-Bin Song and Shan-Sheng Xu*

State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, People's Republic of China

Correspondence e-mail: shanshengxu@126.com

Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.007 \AA$
R factor $=0.037$
$w R$ factor $=0.079$
Data-to-parameter ratio $=15.7$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

[^0]
Bis\{[1-(1H-inden-3-yl)cyclopentyl]- η^{5}-cyclopentadienyl\}hexacarbonyldimolydenum(I)(Mo—Mo)

The title centrosymmetric complex, $\left[\mathrm{Mo}_{2}\left(\mathrm{C}_{19} \mathrm{H}_{19}\right)(\mathrm{CO})_{6}\right]$ or $\left[\left\{\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{4}\right) \mathrm{C}\left(\mathrm{CH}_{2}\right)_{4}\left(\mathrm{C}_{9} \mathrm{H}_{7}\right)\right\} \mathrm{Mo}(\mathrm{CO})_{3}\right]_{2}$, is a binuclear metal carbonyl complex containing an Mo-Mo single bond [3.2405 (9) A]. The cyclopentane ring adopts an envelope conformation. The dihedral angle between the indene and cyclopentadiene rings is $57.0(2)^{\circ}$.

Comment

Reaction of the lithium salt $\left[\mathrm{C}_{5} \mathrm{H}_{4}-\mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}-\mathrm{C}_{9} \mathrm{H}_{7}\right]^{-} \cdot \mathrm{Li}^{+}$with $\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{3} M(\mathrm{CO})_{3}(M=\mathrm{Mo}, \mathrm{W})$ affords $\left[\left\{\mathrm{C}_{5} \mathrm{H}_{4}-\mathrm{C}\left(\mathrm{CH}_{3}\right)_{2^{-}}\right.\right.$ $\left.\left.\mathrm{C}_{9} \mathrm{H}_{7}\right\} M(\mathrm{CO})_{3}\right]^{-} \cdot \mathrm{Li}^{+}$, and subsequent reaction with MeI leads to the formation of a neutral complex $\left[\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{4}-\mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right.$ $\left.\mathrm{C}_{9} \mathrm{H}_{7}\right] M(\mathrm{CO})_{3} \mathrm{Me}$ (Alt et al., 1993). Reaction of the dilithium salt $\left[\mathrm{C}_{5} \mathrm{H}_{4}-\mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}-\mathrm{C}_{9} \mathrm{H}_{6}\right]^{2-}$. Li^{2+} with $\mathrm{Mo}(\mathrm{CO})_{3}\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{3}$ and oxidation with acetic acid and $\mathrm{Fe}^{\mathrm{III}}$ produced a dimer, $\left\{M(\mathrm{CO})_{3}\left[\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{4}-\mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}-\mathrm{C}_{9} \mathrm{H}_{7}\right]\right\}_{2}$, in which the indenyl ring was unmetallated (Fierro et al., 1996). The title compound, $\left\{\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{4}\right) \mathrm{C}\left(\mathrm{CH}_{2}\right)_{4}\left(\mathrm{C}_{9} \mathrm{H}_{7}\right) \mathrm{Mo}(\mathrm{CO})_{3}\right\}_{2}$, (I), was obtained by the reaction of $\left[\mathrm{C}_{5} \mathrm{H}_{5}-\mathrm{C}\left(\mathrm{CH}_{2}\right)_{4}-\mathrm{C}_{9} \mathrm{H}_{7}\right]$ with $\mathrm{Mo}(\mathrm{CO})_{3}\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{3}$ in xylene.

(I)

A view of (I), with the atomic numbering scheme, is shown in Fig. 1, and selected bond lengths and angles are given in Table 1. Compound (I) is a centrosymmetric binuclear metalcarbonyl complex containing an Mo-Mo single bond. As shown in Fig. 1, only the cyclopentadienyl ring of the organic ligand coordinates with the Mo atom, and the indenyl group acts as a substituent. The Mo1 $\cdots C g 1$ distance is 2.0113 (19) \AA, where $C g 1$ is the centroid of the cyclopentadiene ring. The $C g 1-\mathrm{Mo} 1-\mathrm{C} 1, C g 1-\mathrm{Mo} 1-\mathrm{C} 2$ and $C g 1-\mathrm{Mo} 1-\mathrm{C} 3$ angles are 116.09 (13), 125.76 (13) and 127.68 (13) ${ }^{\circ}$, respectively. The Mo-Mo bond distance is 3.2405 (9) \AA and agrees with that observed in the analogous structures $\left(\eta^{5}\right.$ $\left.\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2} \mathrm{Mo}_{2}(\mathrm{CO})_{5}\left(\mathrm{CNCH}_{3}\right)$ [3.230 (1) \AA; Adams et al., 1973] and $\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2} \mathrm{Mo}_{2}(\mathrm{CO})_{6}[3.235$ (1) \AA; Adams et al., 1974].

The two cyclopentadienyl rings are parallel by virtue of the centre of symmetry. The cyclopentane ring in the ligand adopts an envelope conformation, with atom C9 as the flap. The dihedral angle between the indene and cyclopentadiene rings is $57.0(2)^{\circ}$. The crystal packing is stabilized by weak $\mathrm{C}-$ $\mathrm{H} \cdots \mathrm{O}$ interactions (Table 2).

Received 21 June 2006
Accepted 12 July 2006

Experimental

A solution of $\left[\mathrm{C}_{5} \mathrm{H}_{5}-\mathrm{C}\left(\mathrm{CH}_{2}\right)_{4}-\mathrm{C}_{9} \mathrm{H}_{7}\right](497 \mathrm{mg}, 2 \mathrm{mmol})$ (Yan et al., 1998) and $\mathrm{Mo}(\mathrm{CO})_{3}\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{3}$ [obtained by the reaction of $\mathrm{Mo}(\mathrm{CO})_{6}$ ($1000 \mathrm{mg}, 3.79 \mathrm{mmol}$) with $\mathrm{CH}_{3} \mathrm{CN}(15 \mathrm{ml})$ under refluxing for 4 h] (Tate et al., 1962) in xylene (40 ml) was refluxed for 10 h . The solvent was removed under vacuum and the residue was chromatographed on an $\mathrm{Al}_{2} \mathrm{O}_{3}$ column using petroleum ether/ $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1: 1)$ as eluent. The red band was collected and after several days red crystals were obtained (yield $0.06 \mathrm{~g}, 4 \%$). Analysis calculated for $\mathrm{C}_{44} \mathrm{H}_{38} \mathrm{Mo}_{2} \mathrm{O}_{6}$: C 61.84, H 4.48\%; found: C 61.78, H 4.65%.

Crystal data

$\left[\mathrm{Mo}_{2}\left(\mathrm{C}_{19} \mathrm{H}_{19}\right)(\mathrm{CO})_{6}\right]$	$Z=2$
$M_{r}=854.62$	$D_{x}=1.556 \mathrm{Mg} \mathrm{m}^{-3}$
Monoclinic, $P 2_{1} / c$	Mo $K \alpha$ radiation
$a=19.038(4) \AA$	$\mu=0.74 \mathrm{~mm}^{-1}$
$b=7.7015(16) \AA$	$T=293(2) \mathrm{K}$
$c=13.091(3) \AA$	Plate, red
$\beta=108.134(3)^{\circ} \AA^{\circ}$	$0.30 \times 0.20 \times 0.08 \mathrm{~mm}$
$V=1824.1(7) \AA^{3}$	

Data collection

Bruker SMART CCD 1000 area-
detector diffractometer
φ and ω scans
Absorption correction: multi-scan
$\quad(S A D A B S ;$ Sheldrick, 1996)
$T_{\min }=0.691, T_{\max }=1.000$
$\left(\begin{array}{l}\text { men }\end{array}\right.$
9906 measured reflections
3693 independent reflections
2385 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.056$
$\theta_{\text {max }}=26.3^{\circ}$

Refinement
Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.037$
$w R\left(F^{2}\right)=0.079$
$S=1.01$
3693 reflections
235 parameters
H-atom parameters constrained

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0217 P)^{2}\right. \\
& \quad+1.246 P] \\
& \text { where } P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }=0.00 \\
& \Delta \rho_{\max }=0.52 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=-0.47 \mathrm{e}^{-3}
\end{aligned}
$$

Table 1
Selected geometric parameters ($\AA \mathrm{A}^{\circ}$).

Mo1-C1	$1.958(4)$	Mo1-C5	$2.367(4)$
Mo1-C2	$1.977(4)$	Mo1-C6	$2.329(4)$
Mo1-C3	$1.985(4)$	Mo1-C7	$2.306(4)$
Mo1-C4	$2.353(4)$	Mo1-C8	$2.359(4)$
C1-Mo1-C2	$77.65(16)$	C6-Mo1-C4	$58.00(15)$
C1-Mo1-C3	$78.33(16)$	C1-Mo1-C8	$89.62(15)$
C2-Mo1-C3	$106.13(17)$	C2-Mo1-C8	$139.49(15)$
C1-Mo1-C7	$90.54(16)$	C3-Mo1-C8	$108.65(15)$
C2-Mo1-C7	$105.28(16)$	C7-Mo1-C8	$35.72(13)$
C3-Mo1-C7	$143.38(15)$	C6-Mo1-C8	$58.99(14)$
C1-Mo1-C6	$122.14(16)$	C4-Mo1-C8	$35.14(13)$
C2-Mo1-C6	$95.71(16)$	C1-Mo1-C5	$146.51(15)$
C3-Mo1-C6	$153.31(17)$	C2-Mo1-C5	$119.02(17)$
C7-Mo1-C6	$35.24(14)$	C3-Mo1-C5	$118.95(17)$
C1-Mo1-C4	$120.81(15)$	C7-Mo1-C5	$58.06(15)$
C2-Mo1-C4	$152.75(17)$	C6-Mo1-C5	$34.59(15)$
C3-Mo1-C4	$97.73(16)$	C4-Mo1-C5	$34.72(14)$
C7-Mo1-C4	$58.36(14)$	C8-Mo1-C5	$58.44(14)$

Figure 1
The structure of (I), showing 30% probability displacement ellipsoids. Atoms labelled with the suffix A and other unlabelled atoms are generated by the symmetry operation $(-x, 1-y,-z)$.

Table 2
Hydrogen-bond geometry ($\mathrm{A},{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
C5-H5 $\cdots \mathrm{O}^{\mathrm{i}}$	0.98	2.40	$3.334(5)$	160
C6-H6 $^{\mathrm{i}}{ }^{\text {ii }}$	0.98	2.53	$3.499(6)$	171

Symmetry codes: (i) $x,-y+\frac{3}{2}, z-\frac{1}{2}$; (ii) $x,-y+\frac{1}{2}, z-\frac{1}{2}$.
H atoms were placed in calculated positions, with $\mathrm{C}-\mathrm{H}=0.93-$ $0.98 \AA$, and refined using a riding model, with $U_{\text {iso }}(\mathrm{H})=$ $1.2 U_{\text {eq }}$ (parent atom).

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1999); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997a); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997a); molecular graphics: SHELXTL (Sheldrick, 1997b); software used to prepare material for publication: SHELXTL.

The authors thank the National Natural Science Foundation of China (grant Nos. 20472034 and 20574036), and the Research Fund for the Doctoral Program of Higher Education of China (grant No. 20050055008).

References

Adams, R. D., Brice, M. \& Cotton, F. A. (1973). J. Am. Chem. Soc. 95, 6594 6602.

Adams, R. D., Collins, D. M. \& Cotton, F. A. (1974). Inorg. Chem. 13, 10861090.

Alt, H. G., Han, J. S. \& Rogers, R. D. (1993). J. Organomet. Chem. 445, 115124.

Bruker (1998). SMART. Bruker AXS Inc., Madison, Wisconsin, USA.
Bruker (1999). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
Fierro, R., Bitterwolf, T. E., Rheingold, A. L., Yap, G. P. A. \& Liable-Sands, L. M. (1996). J. Organomet. Chem. 524, 19-30.

Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
Sheldrick, G. M. (1997a). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Sheldrick, G. M. (1997b). SHELXTL. Version 5.10. Bruker AXS Inc., Madison, Wisconsin, USA.
Tate, D. P., Knipple, W. R. \& Augl, J. M. (1962). Inorg. Chem. 1, 433-434.
Yan, X., Chernega, A., Green, M. L. H., Sanders, J., Souter, J. \& Ushioda, T. (1998). J. Mol. Catal. A, 128, 119-141.

[^0]: © 2006 International Union of Crystallography All rights reserved

